A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment.
نویسندگان
چکیده
In the present study, an attempt has been made to develop a method for predicting gamma-turns in proteins. First, we have implemented the commonly used statistical and machine-learning techniques in the field of protein structure prediction, for the prediction of gamma-turns. All the methods have been trained and tested on a set of 320 nonhomologous protein chains by a fivefold cross-validation technique. It has been observed that the performance of all methods is very poor, having a Matthew's Correlation Coefficient (MCC) </= 0.06. Second, predicted secondary structure obtained from PSIPRED is used in gamma-turn prediction. It has been found that machine-learning methods outperform statistical methods and achieve an MCC of 0.11 when secondary structure information is used. The performance of gamma-turn prediction is further improved when multiple sequence alignment is used as the input instead of a single sequence. Based on this study, we have developed a method, GammaPred, for gamma-turn prediction (MCC = 0.17). The GammaPred is a neural-network-based method, which predicts gamma-turns in two steps. In the first step, a sequence-to-structure network is used to predict the gamma-turns from multiple alignment of protein sequence. In the second step, it uses a structure-to-structure network in which input consists of predicted gamma-turns obtained from the first step and predicted secondary structure obtained from PSIPRED.
منابع مشابه
FOR THE RECORD Prediction of -turns in proteins from multiple alignment using neural network
A neural network-based method has been developed for the prediction of -turns in proteins by using multiple sequence alignment. Two feed-forward back-propagation networks with a single hidden layer are used where the first-sequence structure network is trained with the multiple sequence alignment in the form of PSI-BLAST–generated position-specific scoring matrices. The initial predictions from...
متن کاملPrediction of -turns in proteins from multiple alignment using neural network
A neural network-based method has been developed for the prediction of -turns in proteins by using multiple sequence alignment. Two feed-forward back-propagation networks with a single hidden layer are used where the first-sequence structure network is trained with the multiple sequence alignment in the form of PSI-BLAST–generated position-specific scoring matrices. The initial predictions from...
متن کاملA neural network method for prediction of ?-turn types in proteins using evolutionary information
MOTIVATION The prediction of beta-turns is an important element of protein secondary structure prediction. Recently, a highly accurate neural network based method Betatpred2 has been developed for predicting beta-turns in proteins using position-specific scoring matrices (PSSM) generated by PSI-BLAST and secondary structure information predicted by PSIPRED. However, the major limitation of Beta...
متن کاملStator Turn-to-Turn Fault Detection of Induction Motor by Non-Invasive Method Using Generalized Regression Neural Network
Condition monitoring and protection methods based on the analysis of the machine's current are widely used according to non-invasive characteristics of current transformers. It should be noted that, these sensors are installed by default in the machine control center. On the other hand, condition monitoring based on mathematical methods has been proposed in literature. However, they are model b...
متن کاملRole of evolutionary information in prediction of aromatic-backbone NH interactions in proteins.
In this study, an attempt has been made to develop a neural network-based method for predicting segments in proteins containing aromatic-backbone NH (Ar-NH) interactions using multiple sequence alignment. We have analyzed 3121 segments seven residues long containing Ar-NH interactions, extracted from 2298 non-redundant protein structures where no two proteins have more than 25% sequence identit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein science : a publication of the Protein Society
دوره 12 5 شماره
صفحات -
تاریخ انتشار 2003